The figures from the Preview Edition of

Hexagonal Architecture Explained

How the Ports & Adapters architecture simplifies
your life, and how to implement it

For
configuring y
/

For
notifying

For
using Q

For
admining

For
getting data

J For
' controlling

Alistair Cockburn

Juan Manuel Garrido de Paz

©Alistair Cockburn 2024 all rights reserved
ISBN 978-1-7375197-8-2

Humans and Technology Press

32 W 200 S #504

Salt Lake City, UT 84101

V0.9a 20240507-1836 for paper books



Hexagonal Architecture Explained

Acknowledgements

From Alistair

| am immensely grateful to Juan Manuel Garrido de Paz, without whom
this book could never have been written. Of all the people | have
conversed with, Juan had the sharpest, deepest, most accurate
understanding of the pattern. He saw its relationship to UML
components and the required interface years before | did.

He was relentless in his quest to understand and describe the pattern.
He provided code for me to study and include. We argued incessantly,
but only ever in pursuit of the truth. Once we found it, we were once
again in complete agreement.

Juan was also a relentless fan of FC Huelva:

Juan at Huelva, 2024

© Alistair Cockburn 2024



Hexagonal Architecture Explained

I-= im\ée‘-"“"h
U = uses

K = \kwews 0’;
IN = it ales

DEPENDENCY
CONFIGURATOR

i”\‘h u..is OB ok Ht YIN werows

dhow the ovder He conFrovmATor
yust \'v\s\'m\ich. e o'b‘vh.

Figure 2.1. The configurator introduces the actors.
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Figure 3.1. The actors in the BlueZone example
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Figure 4.1. The floating restaurant analogy
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Figure 4.2. The hardware chip analogy
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Figure 4.3. Ports are like input and output pins on the chip
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Figure 4.4. Hooking up the connections for testing
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Figure 4.5. Hooking up the connections for production

© Alistair Cockburn 2024



Hexagonal Architecture Explained

53 Solution ‘TaxCalculatorSystem' (5 of 5 projects)
4 FileTaxRatesRepository
P && Dependencies
P C# ForGettingTaxRates.cs
[2) TaxRates.txt
4 MockTaxRatesRepository
P && Dependencies
P C# ForGettingTaxRates.cs
4 TaxCalaulator
P && Dependencies
4 [ Interfaces
4 [0 DrivenPorts
P C# |ForGettingTaxRates.cs
4 [E3 DrivingPorts
P C# |ForCalculatingTaxes.cs
4 [ Services
P C# ForCalculatingTaxes.cs
4 & TaxCalculatorApi
(@ Connected Services
&' Dependencies
3l Properties
B3 Controllers
P C# TaxController.cs
appsettings.json
P C# Program.cs
4 T TaxCalculatorTests
b && Dependencies
P C# ForCalculatingTaxTests.cs
C# Usings.cs

Figure 4.6. The suggested folder structure.
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Figure 4-7. The development sequence: Tests and mocks first
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Figure 5.1. Primary and secondary actors and their goals
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Layers 2+ : Everything Else

(the “Outside”: How you organize everything here is your business)

the configurator

the adapter the adapter
a driving actor a driven actor
needing no adapter needing no adapter
a driving actor a driven actor
needing an adapter / \ needing an adapter
<<uses>> <implements>>

L . (Note: a port is just
(a driving port) (configurator access) (a driven port) an interface,

it has no depth in a
layer diagram)
Layer 1 : The App

(the “Inside™: How you organize everything here is your business)

Figure 5.2. Ports & Adapters only specifies two layers, inside and
outside.

© Alistair Cockburn 2024



Hexagonal Architecture Explained

The Clean Architecture

Controllers

[ ] Enterprise Business Rules

Use Cases [ ] Application Business Rules

[ ] Interface Adapters

[ ] Frameworks & Drivers

I
Use Case
| Controller |—>| Input Port

Figure 5.3. Clean architecture
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-
architecture.html
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Onion Architecture

Figure 5.4. Onion architecture
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/
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David Adamo Jr.
4 @davidadamojr
Software architecture diagrams are an incredibly useful tool for
communicating important design issues and choices. However, it is

important to always remember that they are not the place for detail and
complexity. That is what the corresponding code is for.

9:50 PM - Aug 12, 2023 - 746 Views

Figure 5.5. Architecture drawings are not code:
https://twitter.com/davidadamojr/status/1690541235918753792
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Figure 5.6. Example of an ACL with several responsibilities (Evans, E,
2013)
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Figure 5.7: Anti-corruption layer blending over the hexagon boundary
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CQRS Design Pattern

Tables or
Event
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Eventual
Consistency

Client

| Materialized
| Read Database | View

Figure 5.8. The CQRS architecture, courtesy of Mehmet Ozkaya
[https://medium.com/design-microservices-architecture-with-patterns/cqrs-
design-pattern-in-microservices-architectures-5d41e359768c}
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Figure 6.1. The earliest hexagonal picture, from 1994
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Figure 6.2. Mho's weather system in the hexagon
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Figure 6.8: The inevitable coffee machine
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Context
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Figure 6.9: The Strategy pattern
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Figure 6.10: The drinkmaker example
(Image courtesy of Juan Manuel Garrido de Paz)
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Figure 6.11: A UML Component with Provided and Required interfaces

© Alistair Cockburn 2024



Hexagonal Architecture Explained

NESTED (OMPONENTS REOURED

IWtEREALE

M’\-(

ol
=l

PROVIDED DELEG AT o/ i—- >—? Cﬂ?—‘(

Sy R

—CG— Assemaly, A ‘m‘% @WN{J\&S e services bhak b obhor wscs.
CONNECTORS

DELEGATIOW E)rwmm}vﬁng B/} ‘(\C?(W-Sk %(ﬁf\m o ﬁmw)(‘ \7: o.V\o\AM‘K-

Figure 6.12: Components can be nested
(Image courtesy of Juan Manuel Garrido de Paz)
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Figure 6.13: The Adapter pattern
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Figure 6.14: Using Strategy and Adapter together
http://www.w3sdesign.com/GoF Design Patterns Reference0100.pdf
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Figure 6.15: Strategy as a component diagram
(Image courtesy of Juan Manuel Garrido de Paz)
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Figure 6.16: Component + Strategy as a component diagram
(Image courtesy of Juan Manuel Garrido de Paz)
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Figure 6.17: Component + Strategy as a class diagram
(Image courtesy of Juan Manuel Garrido de Paz)
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Figure 6.18: Ports & Adapters aka Hexagonal Architecture
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Figure 6.19: Apps interacting with and without needing adapters
(Image courtesy of Juan Manuel Garrido de Paz)
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Figure 6.20: Ports & Adapters as component diagram showing test
double
(Image courtesy of Juan Manuel Garrido de Paz)
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Figure 6.21: Components within Ports & Adapters
(Image courtesy of Juan Manuel Garrido de Paz)
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Figure 6.22: The Configurator sets up the knowledge paths
(Image courtesy of Juan Manuel Garrido de Paz)
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Figure 6.23. Informal view of Configurable Receiver, showing two
choices for the placement of the configurator.
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Figure 6.24. The sender owns the interface;

© Alistair Cockburn 2024

Sender (o Receiver
Sender required
iff
1
Sender || uses S| «Interface»
Sender required
iff
b
' implements
!
Receiver

modules.

receivers can be in different



Hexagonal Architecture Explained

........ uses __ >O Receiver
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Receiver provided i/f
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A
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Figure 6.25. Not what we are after just now: The receiver owns the
interface, the sender has a compile-time dependency on the receiver.
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Figure 6.26a. The configurator tells the sender which receiver to use
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Figure 6.26b. The sender asks the configurator which receiver to use
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Figure 6.27. The configurator-configurator sends in a configurator to use
as a service locator or broker for which receiver to use.
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Figure 6.28. Main provides a broker to use to look up receivers.
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Figure 6.29. Ports & Adapters as known use of Configurable Receiver
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Figure 6.30: The Strategy pattern
(source: https://en.wikipedia.org/wiki/Strategy_pattern)
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Figure 6.31. The Observer pattern (source:
https://en.wikipedia.org/wiki/Observer pattern)
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Figure 7.1. A Sample of The Pattern in Action
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R.1.P. Juan Manuel Garrido de Paz. Thank you.
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“Looking at the screen of my laptop, | realized that it was full
of code that didn’t let me understand what it did regarding
business logic. From that moment | began to search until |
discovered the architecture that decouples the business logic
from the frameworks: Hexagonal Architecture, more correctly
called Ports & Adapters. From that moment until now; |
haven’t stopped reading and learning about this pattern.”

Used by giants like Netflix and Amazon, the Hexagonal or
Ports & Adapters architecture simplifies testing, protects
against business logic leakage, supports changing
technologies in long-running system, and lets you apply
Domain Driven Design.

In this definitive book on the subject, pattern author Dr.

Alistair Cockburn and Juan Manuel Garrido de Paz lay bare
all of the intricacies of the pattern, providing sample code and
answering your many frequently asked questions.
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