The figures from the Preview Edition of

Hexagonal Architecture Explained

How the Ports & Adapters architecture simplifies
your life, and how to implement it

For
configuring y
/

For
notifying

For
using Q

For
admining

For
getting data

J For
' controlling

Alistair Cockburn

Juan Manuel Garrido de Paz

©Alistair Cockburn 2024 all rights reserved
ISBN 978-1-7375197-8-2

Humans and Technology Press

32 W 200 S #504

Salt Lake City, UT 84101

V0.9a 20240507-1836 for paper books

Hexagonal Architecture Explained

Acknowledgements

From Alistair

| am immensely grateful to Juan Manuel Garrido de Paz, without whom
this book could never have been written. Of all the people | have
conversed with, Juan had the sharpest, deepest, most accurate
understanding of the pattern. He saw its relationship to UML
components and the required interface years before | did.

He was relentless in his quest to understand and describe the pattern.
He provided code for me to study and include. We argued incessantly,
but only ever in pursuit of the truth. Once we found it, we were once
again in complete agreement.

Juan was also a relentless fan of FC Huelva:

Juan at Huelva, 2024

© Alistair Cockburn 2024

Hexagonal Architecture Explained

I-= im\ée‘-"“"h
U = uses

K = \kwews 0’;
IN = it ales

DEPENDENCY
CONFIGURATOR

i”\‘h u..is OB ok Ht YIN werows

dhow the ovder He conFrovmATor
yust \'v\s\'m\ich. e o'b‘vh.

Figure 2.1. The configurator introduces the actors.

© Alistair Cockburn 2024

Hexagonal Architecture Explained

G} BLUEZONE - €~ PARWNG-METES'SO

NEEY 6@ TEST DOUBLE
=TT VADAPTER ™S -/ (STUB)

CAR DRIVIZR
TESTS >\-S
(cucumBER) = Fie
‘. TEST DOVBLE
XY L

(FAxE)

TesTs ([=] ./ c
(restne) U= T esFin, DATABASE

7
Tt ’
%-"> ADAPTERI -~
PARWING
iNsPE(\TcR Pf]gg,‘f _- ...)
ADAPTER
REMOTE PAYMENT
SYSTEM

TEST DOUVBLE
>~/ (sev)

Figure 3.1. The actors in the BlueZone example

© Alistair Cockburn 2024

Hexagonal Architecture Explained

Figure 4.1. The floating restaurant analogy

© Alistair Cockburn 2024

Hexagonal Architecture Explained

Application

Figure 4.2. The hardware chip analogy

© Alistair Cockburn 2024

Hexagonal Architecture Explained

Driving ports

, Driven ports
For configuring

For using For notifying

For getting data
Foradmin M

For getting other data
or
For controlling something

Figure 4.3. Ports are like input and output pins on the chip

© Alistair Cockburn 2024

Hexagonal Architecture Explained

or using

Test
harness \

For

admin’ing

For configuring

Application

Mocked
devices

For notifying
Ot

Mocked
receivers

For getting
data

(@ neii

Test
database

(P For controlling something

Figure 4.4. Hooking up the connections for testing

© Alistair Cockburn 2024

Hexagonal Architecture Explained

)\/ For notifying actual
O receivers
For getting
data i
® Production
j (database
admin’ing

Q For controlling

actual
devices

Figure 4.5. Hooking up the connections for production

© Alistair Cockburn 2024

Hexagonal Architecture Explained

53 Solution ‘TaxCalculatorSystem' (5 of 5 projects)
4 FileTaxRatesRepository
P && Dependencies
P C# ForGettingTaxRates.cs
[2) TaxRates.txt
4 MockTaxRatesRepository
P && Dependencies
P C# ForGettingTaxRates.cs
4 TaxCalaulator
P && Dependencies
4 [Interfaces
4 [0 DrivenPorts
P C# |ForGettingTaxRates.cs
4 [E3 DrivingPorts
P C# |ForCalculatingTaxes.cs
4 [Services
P C# ForCalculatingTaxes.cs
4 & TaxCalculatorApi
(@ Connected Services
&' Dependencies
3l Properties
B3 Controllers
P C# TaxController.cs
appsettings.json
P C# Program.cs
4 T TaxCalculatorTests
b && Dependencies
P C# ForCalculatingTaxTests.cs
C# Usings.cs

Figure 4.6. The suggested folder structure.

© Alistair Cockburn 2024

Hexagonal Architecture Explained

— N\ / Mock database l

production driver

Production database I

#3

Ha

Figure 4-7. The development sequence: Tests and mocks first

© Alistair Cockburn 2024

Hexagonal Architecture Explained

Primary Actor System under design Secondary Actor
person or system could be any system other system against
with goal for SuD which SuD has a goal

FAPaY
=

RJS;Lsibility T(

- Goal 1
- Goal 2

: [
-~ actionl g5, Responsibility (Interaction 2)

- Goal 1
...action 1—@1—» Responsibility

Interaction 1

- backup goal
for Goal 2

Figure 5.1. Primary and secondary actors and their goals

© Alistair Cockburn 2024

Hexagonal Architecture Explained

Layers 2+ : Everything Else

(the “Outside”: How you organize everything here is your business)

the configurator

the adapter the adapter
a driving actor a driven actor
needing no adapter needing no adapter
a driving actor a driven actor
needing an adapter / \ needing an adapter
<<uses>> <implements>>

L . (Note: a port is just
(a driving port) (configurator access) (a driven port) an interface,

it has no depth in a
layer diagram)
Layer 1 : The App

(the “Inside™: How you organize everything here is your business)

Figure 5.2. Ports & Adapters only specifies two layers, inside and
outside.

© Alistair Cockburn 2024

Hexagonal Architecture Explained

The Clean Architecture

Controllers

[] Enterprise Business Rules

Use Cases [] Application Business Rules

[] Interface Adapters

[] Frameworks & Drivers

I
Use Case
| Controller |—>| Input Port

Figure 5.3. Clean architecture
https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-
architecture.html

© Alistair Cockburn 2024

Hexagonal Architecture Explained

Onion Architecture

Figure 5.4. Onion architecture
https://jeffreypalermo.com/2008/07/the-onion-architecture-part-1/

© Alistair Cockburn 2024

Hexagonal Architecture Explained

David Adamo Jr.
4 @davidadamojr
Software architecture diagrams are an incredibly useful tool for
communicating important design issues and choices. However, it is

important to always remember that they are not the place for detail and
complexity. That is what the corresponding code is for.

9:50 PM - Aug 12, 2023 - 746 Views

Figure 5.5. Architecture drawings are not code:
https://twitter.com/davidadamojr/status/1690541235918753792

© Alistair Cockburn 2024

Hexagonal Architecture Explained

ACL-Backed Repository implementation

~New Context Y
A Business App \
\\\ Repository Repository ‘:

Anticorruption [7

Layer (ACL) —~
Coordinator -
X<->Z ? Y<=z
Translator
Translator /
\\\ N o
,/"\’\‘iﬂ_x»/ \\\ h
\ ; g 3 R
\\ i | |
\] I
/ 4 \ Service Repository
System Y,

\
\
\
\ -

/

i L
! \

]

1

|

\ - —
\
\
’ \
/ \ Data
/ \
// \

_ Context Y

Figure 5.6. Example of an ACL with several responsibilities (Evans, E,
2013)

© Alistair Cockburn 2024

Hexagonal Architecture Explained

Figure 5.7: Anti-corruption layer blending over the hexagon boundary

© Alistair Cockburn 2024

Hexagonal Architecture Explained

CQRS Design Pattern

Tables or
Event
Sourcing

Eventual
Consistency

Client

| Materialized
| Read Database | View

Figure 5.8. The CQRS architecture, courtesy of Mehmet Ozkaya
[https://medium.com/design-microservices-architecture-with-patterns/cqrs-
design-pattern-in-microservices-architectures-5d41e359768c}

© Alistair Cockburn 2024

Hexagonal Architecture Explained

The course uses a system model separating
domain & application from transformers.

Transform

(Use case bgundary)
(Cours topics)ry

Humans and Technolo, section (slide)
Alistair Cockburn © 1994-2!?2¥Ali5uir Cockburn L1-00 ((4)

Figure 6.1. The earliest hexagonal picture, from 1994

© Alistair Cockburn 2024

Hexagonal Architecture Explained

Mhots Weachhe™
R B
)

St Larm

Figure 6.2. Mho's weather system in the hexagon

© Alistair Cockburn 2024

Hexagonal Architecture Explained

Adapter Adapter

Adapter
Adapter

Figure 6.3

© Alistair Cockburn 2024

Hexagonal Architecture Explained

%
DB access
P

service

mock
(in-memory)
database

adapter

Application

Figure 6.4

© Alistair Cockburn 2024

Hexagonal Architecture Explained

1 4

1 70
[71
| J 1

T

y
A 4

< h atemsé S user 1/f
L\
Application
W\
mock database
database access
Figure 6.5

© Alistair Cockburn 2024

Hexagonal Architecture Explained

answering
machine

Figure 6.6

© Alistair Cockburn 2024

Hexagonal Architecture Explained

‘.)@oa

LA TS
0 Y9

Figure 6.7

© Alistair Cockburn 2024

Hexagonal Architecture Explained

RECUPERACION
ceLoRlckaaskfl
RECUPEREA
| recupenagao

Figure 6.8: The inevitable coffee machine

© Alistair Cockburn 2024

Hexagonal Architecture Explained

Context

Contextinterface()

strat
S Strategy
Algorithminterface()
ConcreteStrategyA ConcreteStrategyB ConcreteStrategyC
Algorithminterface() Algorithminterface() Algorithminterface()

Figure 6.9: The Strategy pattern

© Alistair Cockburn 2024

Hexagonal Architecture Explained

DRIVER DRINKMAVER

“-Q.d\\(){
‘ax'ct’w.b& (\

RECIPE

skps

p——

BLALKCO Fre:] ’ MSCCACKT Noj

Figure 6.10: The drinkmaker example
(Image courtesy of Juan Manuel Garrido de Paz)

© Alistair Cockburn 2024

Hexagonal Architecture Explained

Providadintardfacs1 Providad Intaerfaca2

11

Component1

8]

Figure 6.11: A UML Component with Provided and Required interfaces

© Alistair Cockburn 2024

Hexagonal Architecture Explained

NESTED (OMPONENTS REOURED

IWtEREALE

M’\-(

ol
=l

PROVIDED DELEG AT o/ i—- >—? Cﬂ?—‘(

Sy R

—CG— Assemaly, A ‘m‘% @WN{J\&S e services bhak b obhor wscs.
CONNECTORS

DELEGATIOW E)rwmm}vﬁng B/} ‘(\C?(W-Sk %(ﬁf\m o ﬁmw)(‘ \7: o.V\o\AM‘K-

Figure 6.12: Components can be nested
(Image courtesy of Juan Manuel Garrido de Paz)

© Alistair Cockburn 2024

Hexagonal Architecture Explained

inmterface: imesficen
Adaptee Adaptee
Client —— Target adapt: Client ——= Target
% spedfic spedfic
P Openation() v Openation()
1 1
Object : Class !
Adapter | Adapter |
1 1
! !
Adapter Adapter
Sample Sample
Class 4 adaptee. Class . ,
Diagram operation(} specificOperation(); Diagram operation(} specificOperation();

Figure 6.13: The Adapter pattern

© Alistair Cockburn 2024

Hexagonal Architecture Explained

RIS Adaptee

Cient f—>{ Strategy et :Stategy! |.A¢mc :Adapies
— fic
dgorthmi) Algw:v:tm.) 1 1 1 |
X el
[algorhmi) ! -
1) |}
1] |}
1])
| 1 I |}
e J 1 1 1 I
1 ! | 1 i I
H ! 1_akorthmd i spectec |
Strategy! Adapter ! ” Algorhen() |J
1
algorehmi) agorthm) ! : H -
1))
1 1 ' L}

Figure 6.14: Using Strategy and Adapter together
http://www.w3sdesign.com/GoF Design Patterns Reference0100.pdf

© Alistair Cockburn 2024

Hexagonal Architecture Explained

Covinge

SWAYSL A

‘ cone,
aTWAT. B

CenTEN T -——(.:f

Srapretd

CaNt
STRAY. C

Figure 6.15: Strategy as a component diagram
(Image courtesy of Juan Manuel Garrido de Paz)

© Alistair Cockburn 2024

Hexagonal Architecture Explained

DPRIVER

.

P |

LOMPONENT

- —-—

STRATEGY

b 2wttt s vt syl

Figure 6.16: Component + Strategy as a component diagram
(Image courtesy of Juan Manuel Garrido de Paz)

© Alistair Cockburn 2024

Hexagonal Architecture Explained

PRIiveR COMPUNENT
e
deThish
\;\"‘51 &J.‘S"nkyﬂ)
a Sk
Y 4&
StapATEsY T Avaerer |

Figure 6.17: Component + Strategy as a class diagram
(Image courtesy of Juan Manuel Garrido de Paz)

© Alistair Cockburn 2024

-V

Hexagonal Architecture Explained

Figure 6.18: Ports & Adapters aka Hexagonal Architecture

© Alistair Cockburn 2024

Hexagonal Architecture Explained

No APAPYER WEEDED

AVARYER

Figure 6.19: Apps interacting with and without needing adapters
(Image courtesy of Juan Manuel Garrido de Paz)

© Alistair Cockburn 2024

Hexagonal Architecture Explained

TesT
bously

DRIVER beer D @i APPLICATION [——(o

Ll ADAPTER

BATERNAL
LY STEM

-

Figure 6.20: Ports & Adapters as component diagram showing test
double
(Image courtesy of Juan Manuel Garrido de Paz)

© Alistair Cockburn 2024

Hexagonal Architecture Explained

(UML COMPONENTS (WsioE WEXAGonAL APP

Q@DB

We8
Con TReWER Assewaly
ueuetrv\ﬁzl \\\
o
PorT
e
ConTR avagn, WF - q

REQU\RED
=] IvtEREACE
¢ PROVIpED
\VTERFh e

Figure 6.21: Components within Ports & Adapters
(Image courtesy of Juan Manuel Garrido de Paz)

© Alistair Cockburn 2024

Hexagonal Architecture Explained

-

I- QW\\éU"\"'V}‘S }
U = URS
K = Kunows 0&

IN = inelit abes

PRVER

AD ROTER ADRPTER

PEPENDENCY
CONFIGURATOR

e Lkds D DD ok e i arvows
dhow the order bhe conmieurAToR
wurst instomtiel Fre 0‘4&*&'3.

Figure 6.22: The Configurator sets up the knowledge paths
(Image courtesy of Juan Manuel Garrido de Paz)

© Alistair Cockburn 2024

Hexagonal Architecture Explained

fi t
\
\ /7

\ 2
p ;;\/ P = receiver A
1 sender (O
— receiver B
— receiver C

Figure 6.23. Informal view of Configurable Receiver, showing two
choices for the placement of the configurator.

© Alistair Cockburn 2024

Hexagonal Architecture Explained

Figure 6.24. The sender owns the interface;

© Alistair Cockburn 2024

Sender (o Receiver
Sender required
iff
1
Sender || uses S| «Interface»
Sender required
iff
b
' implements
!
Receiver

modules.

receivers can be in different

Hexagonal Architecture Explained

........ uses __ >O Receiver
Sender

Receiver provided i/f

(API)
1
Sender = |-ooooo.] uses | >) «Interface»
Receiver provided
ilf (API)
A
implements
Receiver

Figure 6.25. Not what we are after just now: The receiver owns the
interface, the sender has a compile-time dependency on the receiver.

© Alistair Cockburn 2024

Hexagonal Architecture Explained

receiver A

receiver B
configurator I—bO—l sender |—(

receiver C

Figure 6.26a. The configurator tells the sender which receiver to use

© Alistair Cockburn 2024

Hexagonal Architecture Explained

—O— configurator

O— sender -
— receiver A

— receiver B

L receiver C

Figure 6.26b. The sender asks the configurator which receiver to use

© Alistair Cockburn 2024

Hexagonal Architecture Explained

—I test configurator |

configurator configurator |—>o-

sender

—O

e

—I production configurator I

—I test receiver |

-I production receiver A I

—I production receiver B I

Figure 6.27. The configurator-configurator sends in a configurator to use
as a service locator or broker for which receiver to use.

© Alistair Cockburn 2024

Hexagonal Architecture Explained

repository

set
tax rate

get
tax rate
repository

broker

main or
test case

>0

get
tax

tax
calculator

—(

e

get
tax rate

test
rate repository broker

production
rate repository broker

test
tax rate repository

repository for country A

repository for country B

Figure 6.28. Main provides a broker to use to look up receivers.

© Alistair Cockburn 2024

Hexagonal Architecture Explained

answering
machine

o,
\. adapter ,/

Figure 6.29. Ports & Adapters as known use of Configurable Receiver

© Alistair Cockburn 2024

Hexagonal Architecture Explained

amerface:
Context Strateqy
strateg)_f e
operation (] algorithm()

&

Skl |
strategy.algorthmi); :
i |

P
I I
1 1
Strategyl Strategy2
damp e
'[-‘;f;;! g algorithmi) algorithmi)
aqgran

Figure 6.30: The Strategy pattern
(source: https://en.wikipedia.org/wiki/Strategy_pattern)

© Alistair Cockburn 2024

Hexagonal Architecture Explained

Subject Observer sl ol o2
attach(o) observers ‘ :Subjectl :Observert :Observer2
detachlo) h update] i " 1
notify () . | _attachlol] | :
'_attach(o2) |
foreach o in observers. [‘]" : [‘]
o.updatef); p =B8N | notify() i |
|——] 1 1
- 1 1
Subject] Observer1 Observer2 update(] | :
- state - state - state _getState() J :
getState?] update() update() Sampl update(] _:
amp e setState() T | -
cquence || _getStaten !
Diagram ™
Diagram Tsubjec(graf :
1

Figure 6.31. The Observer pattern (source:
https://en.wikipedia.org/wiki/Observer pattern)

© Alistair Cockburn 2024

Hexagonal Architecture Explained

I weather service telemetry TesUMock receiver I

I weather service RSS feed co"ec:i:: ' : ;
weamegr Analog answering machines I
I weather service web site Yformation For notifying
subscribers Pagers I
Weather Email |

For getting
subscriber data
Test database I
Production database l

Figure 7.1. A Sample of The Pattern in Action

Warning
System

© Alistair Cockburn 2024

Hexagonal Architecture Explained

R.1.P. Juan Manuel Garrido de Paz. Thank you.

© Alistair Cockburn 2024

Hexagonal Architecture Explained

About the Authors

Dr. Alistair Cockburn (pronounced CO-BURN), known for his wild hair
photo on LinkedIn, was named as one of the “42 Greatest Software
Professionals of All Times" in 2020, as a world expert on object-oriented
development, software architecture, project management, use cases
and agile development. Since 2015 he has been working on expanding
agile to cover every kind of initiative, including social impact project,
governments, and families. For his latest work, see
https://alistaircockburn.com/.

© Alistair Cockburn 2024

Hexagonal Architecture Explained

Juan Manuel Garrido de Paz (August 3, 1970 - April 18, 2024) won his
Bachelor in Software Engineering at the Polytechnic University of
Madrid. He became the world’s other leading authority on the Ports &
Adapters pattern by probing and interacting with Dr. Alistair Cockburn
over years. A senior developer for the government of Andalucia, his two
passions were Hexagonal Architecture and Recreativo de Huelva
Football Club. Sadly, Juan passed away just weeks before this book went
to print. This book is dedicated to him and his life.

© Alistair Cockburn 2024

Hexagonal Architecture Explained

“Looking at the screen of my laptop, | realized that it was full
of code that didn’t let me understand what it did regarding
business logic. From that moment | began to search until |
discovered the architecture that decouples the business logic
from the frameworks: Hexagonal Architecture, more correctly
called Ports & Adapters. From that moment until now; |
haven’t stopped reading and learning about this pattern.”

Used by giants like Netflix and Amazon, the Hexagonal or
Ports & Adapters architecture simplifies testing, protects
against business logic leakage, supports changing
technologies in long-running system, and lets you apply
Domain Driven Design.

In this definitive book on the subject, pattern author Dr.

Alistair Cockburn and Juan Manuel Garrido de Paz lay bare
all of the intricacies of the pattern, providing sample code and
answering your many frequently asked questions.

$40.00
ISBN 978-1-7375197-8-2

“ ““ 54000>

781737751

© Alistair Cockburn 2024

paulejdx3 24n323)1yd1y |euoSexaH

Zed 9p Opliien [anuejp uenf 13 uinga0) Jieisl|y

